
I.J.E.M.S., VOL.6 (4) 2015: 236 - 239 ISSN 2229-600X

236

Short Communication

HARDWARE-SOFTWARE CO-DESIGN OF EMBEDDED SYSTEMS
Dwivedi Kartikey

Department of Electronics and Communication Engineering, Manipal Institute of Technology,
Udupi-576104, Karnataka, India

ABSTRACT
Most of today’s gadgets and automobiles use embedded systems, which, in many cases, has taken over what mechanical and
dedicated electronic systems used to do.  Indeed, embedded systems appear in everything from telephone to medical diagnostics,
climate controls, manufacturing to aviation and space sciences. Designing of embedded system capable to perform planned
functions in time and cost is a hardware-software co-design issue as hardware and software influence each other. Our endeavour
is to discover challenges and issues of co-designing hardware/software for the desired performance, cost and time objectives.

Keywords: Embedded System, Embedded System Design, Embedded Software

INTRODUCTION
Creating an embedded computer system which meets
performance, cost and design time goals is a hardware-
software co-design problem. In any embedded system, design
of the hardware and software components influences each
other. Embedded Software (ESW) design is just one, albeit
critical, aspect of the more general problems of Embedded
System Design (ESD or just ES). ESD is all about the
implementation of a set of functionalities satisfying a number
of constraints ranging from performance to cost, emissions,
power consumption and weight. This paper explores critical
relationship issues between hardware and software
architecture in the early stages of design and then surveys
various analysis techniques used to define hardware/software
requirements for hardware-software co-design. Later, we
have analyzed design and synthesis techniques for co-design
and related problems.

EMBEDDED SYSTEMS DESIGN
Embedded system design can be divided into four major
tasks:
a. Partitioning the functions to be implemented into smaller,

interacting pieces;
b. Allocating those partitions to microprocessors or other

hardware units, where the function may be implemented
directly in hardware or in software running on a
microprocessor;

c. Time Scheduling the functions for their execution, which
is important when several functional partitions share one
hardware unit;

d. Mapping a generic functional description into an
implementation on a particular set of components, either

as software suitable for a given microprocessor or logic
which can be implemented from the given hardware
libraries.

An embedded system is an engineering artifact involving
computation that is subject to physical constraints. The
physical constraints arise through two ways that
computational processes interact with the physical world:
reaction to a physical environment and execution on a
physical platform. Common reaction constraints specify
deadlines, throughput and jitter and originate from behavioral
requirements. Common execution constraints bound available
processor speeds, power, and hardware failure rates and
originate from implementation choices. Control theory deals
with reaction constraints; computer engineering deals with
execution constraints. The key to embedded systems design is
gaining control of the interplay between computation and
both kinds of constraints to meet a given set of requirements
on a given implementation platform.

EMBEDDED PROCESSORS AND SOFTWARE
ARCHITECTURES
Before we can begin to architect an embedded system or its
firmware, we must have clear requirements. Properly written
requirements define the WHAT of a product. WHAT does the
product do for the user, specifically? For example, if the
product is a ventilator, the list of WHAT it does may include
a statement such as: "If power is lost during operation, the
ventilator shall resume operation according to its last
programmed settings within 250ms of power up. Each
requirement statement must also be two other things:
unambiguous and testable .Testability is key. If a requirement
is written properly, a set of tests can be easily constructed to



Hardware-Software Co-Design of Embedded Systems

237

verify that requirement is met. Decoupling the tests from the
particulars of the implementation, in this manner, is of critical
importance. Any coupling between the test and the
implementation is problematic. The design of the software
architecture-the division of the function into communicating
processes-is closely related to automobile engine design [4].
Two systems with identical functions but different process
structures may run at very different speeds, require vastly
different amounts of memory, etc.

The increase in the number and complexity of electronic
devices in vehicles is affecting the way designers conceive the
entire automobile. For example, a high-range car equipped
with a rich set  of options can have over 100 wires tied to a
dashboard (including 30 to 35 wires entering each front door),
for a total length of about 3 miles and a weight of about 100
pounds (Mercedes S-series and Renault Safrane)[8].
Effectively replacing such a bundle of hard-wired devices is
a local area network implemented, usually, with a serial bus.
This bus replaces the numerous wires, allocating the functions
to CPUs that no longer need be topologically close to the
controlled part, such as a window or mirror. Compensating
for the added cost of the electronics are savings in material
(wires and connectors), manufacturing time, and reliability of
the links. The complexity of these functions and the precision
dictated, for example, by the exhaust emission control laws,
require the use of specialized fast microcontrollers. Such
controllers, like the Motorola MC68332 feature 32-bit
architectures (versus the 8 or 16 bits of older
microcontrollers) along with specialized micro-
programmable processors (time processing units) to handle
hard real-time tasks more easily. Fig 1.0 shows a typical
sequence of steps in a top down design of an embedded
system; of course, most actual design processes will mix top-
down and bottom-up design.

Circuit tunability for energy/performance-scalable
operation is another issue. As CMOS technology scaling has
continued to increase transistor density, new challenges have
emerged in the design of logic circuits, on-chip interconnect,
off-chip interconnect, and memory hierarchy, all of which are
further complicated by increased device variability in
shrinking CMOS process technologies and reduced supply
voltages. The limitations of logic were the first to affect the
traditional progression of processor development when
transistor density caused CMOS designs to hit a thermal
density barrier. Energy efficiency can be improved
significantly by scaling the supply voltage (nominally around
1V) to sub/near-threshold levels (0.5–0.6 V), at the expense
of a significant exponential increase in delay. This
energy/throughput scalability exists not only for on-chip
computation, but also for on-chip/off-chip inter connect. The
most common solution to the thermal density issues has been
to increase computational parallelism and decrease supply
voltages and clock frequencies. This increased parallelism, in
turn, exhibits larger demands on communications, both within
and between these on-chip cores and processor sockets. This
is especially true in the high-performance computing
environment, where multicore processors require both large
on-chip as well as off-chip memory bandwidth. These

individual, multicore systems must communicate with each
other via high-speed, off-chip interconnect between cores,
chips, boards, racks, and rooms. The result is that the energy
required for communication, either on-chip or off-chip, can
outweigh the energy required for the logic to actually perform
a computation.

TRENDS
Language- and synthesis-based origins
The first generation of methodologies traced their origins to
one of two sources: Language-based methods lie in the
software tradition, and synthesis-based methods stem from
the hardware tradition. A language based approach is centered
on a particular programming language with a particular target
runtime System (often fixed-priority scheduling with
preemption). Early examples include Ada and, more recent,
RT-Java. Synthesis-based approaches have evolved from
circuit design methodologies. They start from a system
description in a tractable, often structural, fragment of a
hardware description language such as VHDL and Verilog
and automatically derive an implementation that obeys a
given set of constraints.
Implementation platform independence
The second generation of methodologies introduced a
semantic separation of the design level from the
implementation level to gain maximum independence from a
specific execution platform during early design phases. There
are several examples. The synchronous programming
languages embody an abstract hardware semantics
(synchronicity) within software; implementation technologies
are available for different platforms, including bare machines
and time-triggered architectures. System C combines a
synchronous hardware semantics with asynchronous
execution mechanisms from software (C++);
implementations and require partitioning into components
that will be realized in hardware on the one side and in
software on the other. The semantics of common dataflow
languages such as Mat-lab’s Simulink are defined through a
simulation engine, as is the controller specification in Figure
1; implementations focus on generating efficient code.
Languages for describing distributed systems, such as the
Specification and Description Language (SDL), generally
adopt an asynchronous semantics.
Execution Semantics Independence
The third generation of methodologies is based on modeling
languages such as the Unified Modeling Language (UML)
and Architecture Analysis and Design Language (AADL) and
go a step beyond implementation independence. They attempt
to be generic not only in the choice of implementation
platform, but even in the choice of execution and interaction
semantics for abstract system descriptions. This leads to
independence from a particular programming language, as
well as to an emphasis on system architecture as a means of
organizing computation, communication, and resource
constraints. Much recent attention has focused on frameworks
for expressing different models of computation and their
interoperation. These frameworks support the construction of
systems from components and high-level primitives for their



I.J.E.M.S., VOL.6 (4) 2015: 236 - 239 ISSN 2229-600X

238

coordination. They aim to offer not just a disjoint union of
models within a common Meta Language but also to preserve
properties during model composition and to support
meaningful analyses and transformations across
heterogeneous model boundaries.

CONCLUSION
High-performance embedded systems consist of multiple
HW/SW subsystems, with application software tasks
distributed over heterogeneous processor subsystems using
sophisticated interconnects .The HW/SW interface and the
CPU subsystems must handle the interaction between
software tasks and the interconnect structure. The interface
provides the application software layer with an abstraction of
the SoC architecture, called a parallel programming model. It
also includes a network interface for both multiprocessor
booting and inter-processor communication that connects the
subsystem to the network. When the SoC includes more than
one CPU, HW/SW interface design becomes more
complicated. Parallel programming models are more complex
than uniprocessor programming models; similarly, network
interfaces are more complex than a unified memory. Thus, as
a recent multiprocessor SoC case study confirms, the
HW/SW[15] interface could become a key challenge in
heterogeneous SoC design. Because design teams
traditionally have applied a software or hardware-only
strategy, there is a temptation to continue using this approach
to implement large applications. Software teams claim that
their approach results in a shorter design cycle. For example,
a pure software approach may reduce the design cycle for
derivative design because software is flexible enough to add
new functionality. On the other hand, hardware teams argue
that their approach is more efficient. While an embedded
software approach could result in a larger chip or even a
chipset, the ASIC approach will yield a smaller chip. Even for
a single product, achieving the best volume in a given market
window considering chip size and yield in chip production
may require combining hardware and software solutions. In
terms of yield in chip production, both ASIC and embedded
software approaches have pros and cons. The ASIC approach
can suffer from low yield in the first few months of chip
production until the learning curve improves. However, the
reduced chip size may improve total chip production. An
embedded software approach can give a good initial yield
since it reuses an already proven SoC platform. However, a
larger chip size may reduce the effects of yield improvement.
Ultimately, achieving optimal SoC production will require
some combination of hardware and software solutions. This
co-design scheme opens the design process to several
optimizations that are not possible using the classic approach
in which hardware and software are designed separately. The
most obvious improvement is better adaptation of the CPU to
both hardware and software interfaces. For example,
designers can use new flexible processor technologies such as
Tensilica7 to optimize performance at the HW/SW interface
by introducing application-specific I/O operation[2]. In
addition, using reconfigurable hardware, such as the Xilinx

Virtex II Pro, can optimize hardware interfaces to an
embedded CPU.

REFERENCES
K. Buchenrieder and C. Veith, “CODES: A practical
concurrent design environment,” presented at the 1992
ACM/IEEE Int. Workshop on Hardware-Software CO-
Design, Estes Park CO,Oct. 1993.

M. Chiodo and A. Sangiovanni-Vincentelli, “Design
methods for reactive real-time systems co-design,” presented
at the 1992 ACMDEEE Int. Workshop on Hardware-
Software CO-Design. Estes Park CO, Oct. 199j.

M. Chiodo, P. Giusto. A. Jurecska. M. Marelli. L. Lavagno.
H. Hsieh, and A. Sangiovanni-Vincentelli, “A formal
specifiation model for hardware/software co-design,”
presented at the Int. Workshop on Hardware Software CO-
Design, Cambridge MA, Oct. 1993.

J. G. D’Ambrosio, S. Hu, and A. Tang, “The role of analysis
in hardware Software co-design,” presented at the 1993
ACM/IEEE Int. Workshop on Hardware-Software Co-
Design, Cambridge MA. Oct. 1993.

R. Emst, J. Henkel, and Th. Benner, “Hardware-software
co-synthesis for micro-controllers,” IEEE Des. & Test of
Comput., vol. 9, pp. 138-153, 1990 -vol. 10, no. 4, pp. 64-
75, Dec. 1993.

R. K. Gupta and G. De Micheli, “Hardware-software co-
synthesis for digital systems,” IEEE Des. & Test Comput.,
vol. 10, no. 3, pp. 2941, Sept. 1993

D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi,
R.Sherman, A. Shtull-Trauring, and M. Trakhtenbrot,



Hardware-Software Co-Design of Embedded Systems

239

STATEMATE: A working environment for the development
of complex reactive systems,” IEEE Trans. Software Eng.,
vol. 16, no. 4, pp. 403414, Apr. 1990.

A. Kalavade and E. A. Lee, “A hardware-software co-design
methodology for DSP applications,” IEEE Des. & Test, vol.
10, no. 3, pp. 1628, Sept. 1993.

H. Kasahara and S. Narita, “Practical multiprocessor
scheduling algorithms for efficient parallel processing,”
IEEE Trans. Comput., vol. C-33, no. 11, pp. 1023-1029,
Nov. 1984.

S. Malik and A. Wolfe, “Tutorial on embedded systems
performance analysis,” presented at ICCD’93, Cambridge
MA, Oct.1993.

P. Chou, R. Ortega, and G. Borriello, “Synthesis of the
hardware software interface in microcontroller-based
systems,” in Proc. ICCAD-92. IEEE Computer Society
Press, 1992, pp.488495.

P. Michel, U. Lauther, and P. Duzy, Eds., The Synthesis
Approach to Digital System Design. Norwell, MA:
Kluwer,1992.

M. Burke, “An interval-based approach to exhaustive and
incremental inter-procedural data-flow analysis,” ACM
Trans. Programming Languages and Systems, vol. 12, no
3, pp. 341-395, July, 1990.

T. L. Adam, K. M. Chandy. and J. R. Dickson, “A comparison
of list schedules for parallel processing systems,” Commun.
ACM, vol. 17, no. 2, pp. 685-690, Dec. 1974.

A. Benveniste and G. Berry, “The synchronous approach to
reactive and real-time systems,” Proc. IEEE, vol. 79, no. 9,
pp.’ 127&1282, Sept. 1991.

W. W. Chu and L. M.-T. Tan, “Task allocation and
precedence relations for distributed real-time systems,” IEEE
Trans. Comput., vol. C-36, no. 6, pp. 667-679, June 1987.


